Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

نویسندگان

  • Peter Hermann
  • Arne Hoehl
  • Georg Ulrich
  • Claudia Fleischmann
  • Antje Hermelink
  • Bernd Kästner
  • Piotr Patoka
  • Andrea Hornemann
  • Burkhard Beckhoff
  • Eckart Rühl
  • Gerhard Ulm
چکیده

We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchrotron-based Imaging FTIR Spectroscopy in the Evaluation of Painting Cross-sections

A recently commissioned mid-infrared synchrotron beamline (IRENI) at the Synchrotron Radiation Center (SRC) in Stoughton, WI, provides wide-field illumination for an FTIR microscope equipped with a focal plane array (FPA) detector by bundling and collimating 12 beams extracted from the synchrotron source. This unique design enables Fourier transform infrared (FTIR) imaging applications that req...

متن کامل

Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolaye...

متن کامل

Nano-FTIR chemical mapping of minerals in biological materials

Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its f...

متن کامل

Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment.

Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful nanoscale spectroscopic tool capable of characterizing individual biomacromolecules and molecular materials. However, applications of scattering-based near-field techniques in the infrared (IR) to native biosystems still await a solution of how to implement the required aqueous environment. In this work, we dem...

متن کامل

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 22 15  شماره 

صفحات  -

تاریخ انتشار 2014